使用恰當的關鍵業(yè)績指標評價鉆井效率(英)

[加入收藏][字號: ] [時間:2009-01-08  來源:E&P  關注度:0]
摘要:簡介:斯倫貝謝公司使用公制指標進行鉆井效率評價,本文主要介紹了怎樣選擇指標,選擇時應當考慮哪些因素,哪些指標是合理的,如何顯示評價結果等。 Using the proper metric to measure performance ...
簡介:斯倫貝謝公司使用公制指標進行鉆井效率評價,本文主要介紹了怎樣選擇指標,選擇時應當考慮哪些因素,哪些指標是合理的,如何顯示評價結果等。

Using the proper metric to measure performance can create a clearer picture of how a company measures up against its peers and can also function as a driver for improvement. 


This chart shows BHA system performance by year when the rotary steerable system is the primary drive mechanism. (Image courtesy of Schlumberger) 

For many years, the operator and service sectors have spent countless hours discussing the notion of good and poor drilling system performance. Almost all have attempted, with varying degrees of success, to measure this performance and to use that measurement to gauge themselves against their peers and competitors.

Success in such an undertaking comes down to ensuring that the metric used is really measuring what is important to your operation or activity. The critical question is, “What should the metric be?”

The answer is that the metric should truly measure what it is intended to measure. This may sound strange, but it is not uncommon for a key performance indicator (KPI) to measure only one of a multitude of facets that comprise performance. This approach usually ends in disappointment.

The metric should be defined so as to be easily understood and to ensure that data collected can be compared on an “apples-to-apples” basis without manipulation. It should be easily gathered and collated, and if possible, it should be available from two or more sources so that it can be cross checked for accuracy.

So can this single metric drive the desired performance improvement? It is common for more than one metric to be needed, but using more than two or three becomes far too complicated.

The process of choosing a suitable metric can be easily illustrated with an example from the drilling service provider sector (directional drilling, measurement-while-drilling, and logging-while-drilling). For many years, drilling service providers and their clients, the operators, have widely used mean time between failure (MTBF) to measure performance, drive performance improvement, and compare the relative merits of various providers.

Typically, operators want high system reliability and efficiency, and many are willing to reward providers over and above the contract rate to encourage performance. For the drilling service industry, reliability can be interpreted as placing the well in the correct place, providing high-quality measurements in both memory and real time, drilling efficiently (no trips caused by component or system failure), and finally ensuring that the hole drilled is fit for purpose to allow subsequent operations to progress without hindrance.

The question at this point is, “Does MTBF accomplish this?”

MTBF defines the reliability of a tool by dividing the total pumping hours the tool was exposed to by the number of failures during that time. A failure is normally defined as an event that causes lost time.

The first point to note here is that this approach only addresses the reliability component of an overall performance metric and assumes that if there are no failures, efficiency is achieved.

Secondly, MTBF is usually measured on a tool-by-tool basis, not in terms of system performance. It is assumed that if all the tools in the bottomhole assembly (BHA) have a high MTBF, the BHA has a high MTBF.

Lastly, MTBF uses pumping hours and assumes circulating time is the critical factor. If the tool can be circulated through longer without failure, performance is considered to be better.

It becomes clear that while MTBF is useful when looking at the life of components and erosion issues within tools, its use as a metric to drive drilling performance is limited. MTBF has little bearing, for example, on the footage drilled. There is an assumption that circulating time is an equivalent to the distance drilled, which certainly cannot be assumed.

Measuring the MTBF for a given tool does allow some basic reliability evaluations to be made when comparing one tool to another, (in terms of which tool functions for the longest pumping time), but this can be very misleading. It takes no account of the total BHA system in which that tool or service was run and whether all the BHA components used are compatible. It is total system reliability that is significant in this case, not the performance of a single component.

The use of pumping hours must also be questioned. While some broad comparisons can be drawn between circulating time and distance drilled, part of the evaluation is based on how efficiently the circulating time is used. It is a stretch to say that circulating off bottom or drilling slowly to reduce drilling stress actually makes the tool appear more reliable and by default, because of the gross association, efficiency has increased.

The metrics need to be improved to achieve the aim of measuring and driving improvements in drilling services performance.

Evaluating the approach

A number of issues should now be obvious: 

• One KPI cannot be used as a catch all. A small number of interrelated KPIs are more likely to capture the overall metric of performance.
• A tool cannot be considered in isolation, but must be evaluated as part of a system. The goal is to define a metric that reflects system performance.
• Maximizing system reliability is
critical, but is only part of the
challenge. How we use the time that reliability provides is equally important.

More factors than MTBF must be considered if a true evaluation is to be made. In fact, two or three KPIs are needed: one to address reliability, one to address efficiency, and if a tool that provides data is being evaluated, there must also be a KPI to measure the quality of the data and the amount of data obtained versus that required.

These KPIs must all be seen in terms of the overall goal ? that of drilling the well. It makes much more sense, in this case, to define the KPIs in terms of footage rather than time.

The following would be reasonable KPIs: 

• The reliability of the BHA system measured in feet between failures;
• The efficiency of the system in the number of feet drilled per circulating hour; and
• The amount of good quality data obtained at the required data density as a percentage of the total footage drilled.

These KPIs allow both operator and service provider to measure BHA reliability and efficiency as well as data quality/recovery. They also make it simple to compare how the complexity of the BHA affects these values. Finally, these KPIs allow a more objective comparison of drive mechanisms and vendors. While these KPIs are not perfect, they tie reliability, efficiency, and data recovery together in a simple way.

Showing the results

In this example, BHA reliability continues to improve, but drilling efficiency shows only minor improvements in terms of feet per circulating hour. By evaluating this issue using the KPIs listed above, additional work can be done to further define performance.

In this case, we would look at whether we are being too conservative with drilling parameters or choice of bit to avoid BHA failure. We shoud determine if the mud systems or rig is capacity constrained in terms of hole cleaning, and if penetration rates are being controlled for data collection. The distance being drilled per hour might be a result of a combination of these factors and many others, but now we are aware of where to look for performance improvement.

Going forward, the industry must look more closely at the system performance improvement we are trying to drive and what significantly effects performance. Appropriate KPIs reflect all of the major influences on final performance. To be useful, KPIs must also be easy to gather and cross reference to provide a true benchmark of current performance. Only then can performance goals be set realistically so that progress can be measured against them and providers can be benchmarked against one another.



          您的分享是我們前進最大的動力,謝謝!
關鍵字: 鉆井 
關于我們 | 會員服務 | 電子樣本 | 郵件營銷 | 網站地圖 | 誠聘英才 | 意見反饋
Copyright @ 2012 www.tolkopozitiv.com Inc All Rights Reserved 全球石油化工網 版權所有
京ICP證120803號 京ICP備05086866號-8 京公網安備110105018350
主站蜘蛛池模板: 老头天天吃我奶躁我的视频 | 车上做好紧我太爽了再快点| 欧美性大战久久久久久久| 欧美日韩国产综合在线小说| 在线精品国产一区二区三区| 国产午夜免费秋霞影院| 久久高清内射无套| 欧美日韩高清性色生活片| 最近最新在线中文字幕| 好男人资源在线播放看| 免费看美女扒开腿让男人桶| 一级一级女人真片| 精品乱人伦一区二区三区| 影音先锋女人aa鲁色资源| 国产内射在线激情一区| 亚洲爱情岛论坛| 97久久天天综合色天天综合色hd | 旧里番yy6080| 大胸妈妈的朋友| 北条麻妃大战黑人| 久久人人妻人人做人人爽| 5╳社区视频在线5sq| 粗大的内捧猛烈进出小视频| 日韩a毛片免费观看| 国产精品不卡高清在线观看| 亚洲一区二区免费视频| 2021日韩麻豆| 欧洲精品免费一区二区三区| 国产成人AV免费观看| 亚洲天堂第一区| 国产挤奶水主播在线播放| 日韩乱码人妻无码中文字幕| 国产三级小视频| 九九热爱视频精品| jizz性欧美12| 欧美日韩一区二区三区麻豆| 国产精品h在线观看| 久久国产精品99精品国产| 一二三四视频在线观看韩国电视剧| 韩国男女无遮挡高清性视频| 欧洲精品一区二区三区|